If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-2n-32=0
a = 1; b = -2; c = -32;
Δ = b2-4ac
Δ = -22-4·1·(-32)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{33}}{2*1}=\frac{2-2\sqrt{33}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{33}}{2*1}=\frac{2+2\sqrt{33}}{2} $
| (x+4)/2=4-(x+2)/3 | | (3x+4)^2=0 | | -5(2x-66)=4(x+11) | | x+4/2=4-x+2/3 | | 7x/1*4/7=10/x*7x/1 | | 2.81z-8.0893=-3.79 | | (n+2)(n-4)=24 | | x÷2-5=10 | | 4x-1=-3x+7 | | 6x+5x+2+9=6x+4+4x | | 4(-2)+2y=12 | | 2x^2=3x-16x^2 | | 11w-5w=12 | | 4x-1=-3x-7 | | 8y+15=5(y-3) | | 7x+30+11x-24=90 | | 9^x=5 | | 9(t-2)=4(t-15 | | 9y-3=-20y-72 | | X2+5x-24=0 | | (9^x)-5=0 | | 5(2z+5)=15-2(z-5) | | 7y-14y=14 | | 6(5−8v)+12=−546(5−8v)+12=−54 | | 2/(x-3)+1/4=2 | | 2/3-x=1/3-1/x | | 44.1-4.9t^2=0 | | 2/x-3+1/4=2 | | 5(x-0.9)=3(x+1.1) | | y+33=14 | | -14w+36=-21w-21 | | 5(x+5)+5=-5 |